The cryopreservation equipment market is expected to reach US$ 12,489.84 million by 2028 from US$ 6,358.65 million in 2022; it is estimated to grow at a CAGR of 11.9% from 2022 to 2028.
The factors such as growing acceptance for regenerative medicine and increasing need of biobanking practices are contributing to the market growth. However, the stringent regulatory requirements hinder the cryopreservation equipment market growth.
Cryopreservation is a technique employed to minimize cell damage caused during freezing and storage of biological materials such as tissue, bacteria, fungi, virus, and mammalian cells. Tissues and genetically stable living cells preserved via cryopreservation can be used in research and other biomedical applications. The equipment required for cryopreservation includes cryopreservation systems, cryoware, accessories, and cryogen.
Cryopreservation plays an important part in the field of regenerative medicine as it facilitates stable and secure storage of cells and other related components for a prolonged time. Regenerative medicine enables replacing diseased or damaged cells, tissues, and organs by retrieving their normal function through stem cell therapy. Owing to the advancements in the medical technology, stem cell therapy is now being considered as an alternative to traditional drug therapies in the treatment of a wide range of chronic diseases, including diabetes and neurodegenerative diseases. Moreover, the US Food and Drug Administration (FDA) has approved blood-forming stem cells. The blood-forming stem cells are also known as hematopoietic progenitor cells that are derived from umbilical cord blood. The growing approvals for stem cell and gene therapies are eventually leading to the high demand for cryopreservation equipment. Following are a few instances of stem cell and gene therapies approved by the FDA and other regulatory bodies.
Type Insights
Based on type, the global cryopreservation equipment market is segmented into freezers, sample preparation systems, and accessories. In 2021, the freezers segment held the largest share of the market, and it is expected to register the highest CAGR in the market during 2022-2028. In ultracold freezers, liquid nitrogen is used for the successful preservation of more complex biological structures by virtually seizing all biological activities.
Cryogen Type Insights
Based on cryogen type, the global cryopreservation equipment market is segmented into liquid nitrogen, oxygen, liquid helium, argon, and others. In 2021, the liquid nitrogen segment held the largest share of the market; the market for this segment is further expected to grow at the highest CAGR during 2022-2028. Liquid nitrogen is a nonmechanical method of cells preservation. Large thermos-like containers are used to house either racks or shelves that hold cryogenic vials.
Application Insights
Based on application, the global cryopreservation equipment market is segmented into cord blood stem cells, sperms, semen & testicular tissues, embryos and oocytes, cell and gene therapies, and others. In 2020, the cord blood stem cells segment held the largest share of the market. Moreover, the market for the sperms segment is expected to register the highest CAGR in the market during 2022-2028. In recent years, public cord banking has been promoted over private cord banking. Various centers across the world are performing cord blood stem cell transplantation as a part of the management of genetic, hematologic, immunologic, metabolic, and oncologic disorders, among others, which is bolstering the growth of the market for the public cord banking segment.
End User Insights
Based on end user, the cryopreservation equipment market is segmented into stem cell banks, biotechnology and pharmaceuticals organizations, stem cell research laboratories, and others. The biotechnology and pharmaceuticals organizations segment held the largest market share in 2020, and it is further expected to be the largest shareholder in the market by 2028. Cryopreservation has become an integral part of the manufacturing process of many cellular therapies as it sometimes precedes cell culture (by preserving the starting cellular material before beginning large-scale manufacturing) and generally follows cell expansion.
Read More